Multidomain spectral method for Schrödinger equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multidomain spectral method for solving elliptic equations

Harald P. Pfeiffer∗, Lawrence E. Kidder†, Mark A. Scheel‡, and Saul A. Teukolsky§ ∗ Department of Physics, Cornell University, Ithaca, New York 14853 , † Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853, ‡ California Institute of Technology, Pasadena, California 91125, and § Department of Astrophysics, American Museum of Natural History, CPW & 79th Street, ...

متن کامل

Multidomain spectral method for the helically reduced wave equation

We consider the 2+1 and 3+1 scalar wave equations reduced via a helical Killing field, respectively referred to as the 2–dimensional and 3–dimensional helically reduced wave equation (HRWE). The HRWE serves as the fundamental model for the mixed–type PDE arising in the periodic standing wave (PSW) approximation to binary inspiral. We present a method for solving the equation based on domain dec...

متن کامل

Multidomain, Sparse, Spectral-tau Method for Helically Symmetric Flow

We consider the application of a multidomain, sparse, and modal spectral-tau method to the helically reduced Navier Stokes equations describing pipe flow. This work (i) formulates the corresponding modal approximations, (ii) describes improved boundary conditions for the helically reduced equations, and (iii) constructs iterative solutions of the corresponding elliptic problem that arises in th...

متن کامل

Spectral controllability for 2D and 3D linear Schrödinger equations

We consider a quantum particle in an infinite square potential well of Rn, n = 2, 3, subjected to a control which is a uniform (in space) electric field. Under the dipolar moment approximation, the wave function solves a PDE of Schrödinger type. We study the spectral controllability in finite time of the linearized system around the ground state. We characterize one necessary condition for spec...

متن کامل

A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations

This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Computational Mathematics

سال: 2015

ISSN: 1019-7168,1572-9044

DOI: 10.1007/s10444-015-9429-9